A Comparative Analysis of Different Data mining algorithm for Credit risk modeling

Jismy Joseph¹, Dr.G. Kesavaraj²

PhD Research Scholar¹, Professor and head² Department of Computer Science, Vivekanandha College of Arts and Science for Women (Autonomous), Elayampalayam, Thiruchengode, Tamil Nadu, India Email: jismyjoseph2018@gmail.com¹, Dr.Kesavaraj@vicas.org²

Abstract- Analysis of credit risk is a data mining problem deserving serious consideration in financial risk governance. The abundance of data generated daily in banks and other financial sectors poses a challenge in the realm of data mining. This paper compares the accuracy and efficiency of twelve data mining algorithms –Naïve Bayes, Bayes Net, Simple Logistic, SMO, Decision Table, OneR, ZeroR, J48, Random Forest, IBk, KStar and REPTree by applying them to three credit data sets. Experiment results show that Random Forest algorithms produced the best classification accuracy, On the contrary, the ZeroR algorithm produced low accuracy.

Index Terms - Data Mining, Classification, Machine learning, Weka.

1. INTRODUCTION

The concept of banking in recent times has undergone vast changes that have been accompanied by emergence of new risks and worsening of existing ones. In such a scenario, credit risk analysis becomes a challenging and emerging field in data mining. A highly desired usage of economic capital can be achieved by a thorough evaluation of credit risk. There are different types of credit risks. It can be credit default risk, country risk or a concentration risk [1]. Data mining techniques can extract hidden information from huge data set, this knowledge will help the bankers to analyze the credit risk.

Data mining is also known as KDD (Knowledge Discovery in Databases), is used to retrieve potentially useful information from huge amount of data. In many emerging fields like retail, bioinformatics education and financial enterprises are using data mining algorithms for knowledge recovery. The main stages of KDD are data selection, data preprocessing, data projection, data mining, and knowledge recovery. In this paper I have used the tool Weka for analyzing different data mining algorithms. Weka is an open source data mining software developed by University of Waikato, New Zealand and it contains different machine learning algorithms.

2. LITERATURE REVIEW

To predict credit risk already many research work are done. In the paper 'Comparative Analysis of Data Mining Classification Algorithms in Type-2 Diabetes Prediction Data Using WEKA Approach' [2] Kawsar Ahmed, Tasnuba Jesmin compared speed and accuracies of different data mining classifications and then ranked the best 5 algorithms. They used type-2 diabetes disease dataset.

In [3] Aman Kumar Sharma , Suruchi Sahni in their paper they conducted experiment in the WEKA environment by using four algorithms namely ID3, J48, Simple CART and Alternating Decision Tree on the spam email dataset and later the four algorithms were compared in terms of classification accuracy. According to their simulation results, the J48 classifier outperforms the ID3, CART and ADTree in terms of classification accuracy.

In [4] Satish Kumar David, Amr T.M. Saeb, Khalid Al Rubeaan, 2013 they compared algorithms based on their accuracy, learning time and error rate and they observed that there is a direct relationship between execution time in building the tree model and the volume of data records, while there is also an indirect relationship between execution time in building the model and the attribute size of the data sets. They concluded that Bayesian algorithms have better classification accuracy over and above compared algorithms.

In [5] Shrey Bavisi, Jash Mehta, Lynette Lopes concluded that The Naïve Bayes model is simple, elegant and extremely robust, making it way more appealing. On the other hand it is an easily understood and easily implemented classification technique. C4.5 algorithm is also used in classification problems where it is used to build decision trees. C4.5 deals with both numeric attributes as well as missing values, making it suitable for dealing with real life problems.

In [6] Hong Yu, Xiaolei Huang, Xiaorong Hu, Hengwen Cai conducted a comparative study on four

data mining algorithms - logistic regression (LR), decision tree (C4.5), support vector machine (SVM) and neural networks (NN). They used two credit data sets and the result shows that the LR and SVM algorithms produced the best classification accuracy, and the SVM shows the higher robustness and generalization ability compared to the other algorithms. On the contrary, the neural networks algorithm performed poorly on the two credit data sets in their experiments.

3. DATA SETS AND CLASSIFIERS

I have used three set of credit data from UCI repository for comparing twelve algorithms to find credit risk. The first data set is an Australian credit data set. This data set consists of 15 attributes and 690 instances. The second set is a Japanese credit data which has 16 attributes and 690 instances. The third one is a German credit Data set with 21 attributes and 1000 instances. In this comparative study 12 classification algorithms are used. In Weka these classifiers are categorized into different groups such a trees, rules, bays, function and lazy. The classification algorithms are:

3.1. IBK

Knn is an instance based and non parametric classification algorithm. It uses k closest instances to predict target class. These nearest instances are calculated by using distance measures. Euclidean, Manhattan, Minkowski and Hamming are commonly used different distance measures. For continuous variables Euclidean, Manhattan, Minkowski are valid but for categorical variables Hamming distance is used. In Knn, the classification of a case is based on the highest number of votes of its neighbors and the case is assigned to the most common class, its K nearest neighbors.

3.2. SMO

SMO is one method to solve SVM problems. Support Vector machine is a supervised classification algorithm, also used for regression analysis. SVM can perform linear and non linear classification. In this algorithm, each data items are plotted as a point in ndimensional space (where n is number of features you have) with the value of each feature being the value of a particular coordinate.

3.3. Bayes Net

Bayes Net, also called Bayesian Networks are structured graphic models of probabilistic relationship between random variables. In this model the node of the graph denotes the random variables and the edges represent the conditional dependencies between the variables. In this method the models are made from probability distribution and it uses the probability law for prediction.

3.4. Simple Logistic

Simple Logistic classifier is used to build linear logistic regression model. If I have a nominal variable and a measurement variable then I can use simple logistic model to predict the probability of whether change in the measurement variable can causes change in the nominal variable. Here the nominal variable is dependent and measurement variable is independent.

3.5. Naïve Bayes

Naïve Bayes is a powerful and straightforward algorithm for classification. This approach can work on data set that has millions of records [7]. It is a supervised learning method based on conditional probability and also using independent assumption. The probability of an event can be calculated by using the conditional probability. The following formula is used for calculating the conditional probability. P (H/E) = (P (E/H)*P (H))/P (E).

3.6. Random Forest

Random Forest is a supervised machine learning algorithm used for classification and regression. These classifiers handle the missing values and can model the categorical values It creates many decision trees and merges them together to form an accurate prediction. In the method the parameters are used to increase the predictive power and speed of the model.

3.7. OneR

OneR is a fast, accurate and Reproducible algorithm can handle only categorical data. By using frequency table it creates a rule for a predictor and select the rule has lowest error as its rule.

3.8. REPTree

REP Tree is a regression based classifier, it generate multiple trees in different iteration and select best one from these and is considered as the representative one.

3.9. Kstar

Kstar is similar to K Nearest Node(KNN). It is a instance based classifier, that uses entropy as a distance measure. In this algorithm new instance are assigned to the class that occurs most frequently amongst the K nearest data set [8].

4. RESULT AND OBSERVATION

The algorithms are executed by using the 'Explorer' option of the Weka tool. Firstly, the text data set is converted into ARFF format and submitted to Weka then data preprocessing is performed to create quality data. After that data classification is done for finding the data models.

4.1. Classification of data set 1

The first data set is an Australian credit data set with 15 attributes and 690 instances. The algorithm Random forest has highest accurate rate 87%. 8 out of

12 algorithms got accuracy more than 80%. The algorithm ZeroR got lowest accurate rate 56%. 86.9% of the instances are correctly classified by random Forest. Table 1 shows that RandomForest, Simple logistic, Decision table and ONeR performed better than the remaining algorithms. The SMO and simple logistic took more time (0.36 sec, 0.34 sec) for classification whereas the remaining algorithms took almost less than 0.3 second. The Kappa statistic of Simple Logistic, SMO, Decision Table, Random Forest and OneR are almost same (0.7)

Table	1:- (Comparison	of different	classifiers u	ises Au	stralian	credit	data set	with 1	15 attributes	and	690 i	nstances

Australian credit data set													
Algorithms)	Correctly Classified Instances (%)	Incorrectl y Classified Instances (%)	Kappa Statisti c	Time taken (In sec)	Mean Absolute Error	Root Mean Square d Error	Relative Absolute Error (%)	Root relative Squared Error (%)					
Naïve Bayes	77.2464	22.7536	0.5244	0.02	0.2255	0.439	45.6478	88.3326					
Bayes Net	84.9275	15.0725	0.6929	0.04	0.1713	0.3414	34.6709	68.6899					
Simple Logistic	85.942	14.058	0.7177	0.34	0.2058	0.3187	41.6662	64.128					
SMO	85.5072	14.4928	0.7116	0.36	0.1449	0.3807	29.3397	76.6032					
Decision Table	85.7971	14.2029	0.7134	0.19	0.2513	0.3423	50.8749	68.8834					
OneR	85.5072	14.4928	0.7116	0.02	0.1449	0.3807	29.3397	76.6032					
ZeroR	55.5072	44.4928	0	0	0.494	0.497	100	100					
J48	85.2174	14.7826	0.6997	0.06	0.1822	0.3517	36.8881	70.7605					
Random Forest	86.9565	13.0435	0.7368	0.29	0.202	0.3093	40.8967	62.2472					
IBk	80	20	0.5956	0	0.201	0.4465	40.6838	89.8444					
KStar	79.1304	20.8696	0.568	0.01	0.2215	0.4066	44.8386	81.8124					
REPTree	84.7826	15.2174	0.6948	0.01	0.2075	0.3406	42.0072	68.5318					

Figure 1- Comparison -Accuracy, Sensitivity & Specificity

T 11 0 0	•	C	• , • • • ,	0		• • •	1.	1.	1
Table2: C	omparison	of accuracy.	sensitivity	άs	pecificity i	in Austi	ralian	credit	data set.
		, sec. 19							

Australian credit Data set													
Algorithms	ТР	FN	FP	TN	Sensitivity= TP / (TP+FN)	Specificity = TN / (TN+FP)	Accuracy = (TP+TN)/ (TP+FN+FP+TN)						
Naïve Bayes	353	30	127	180	0.92	0.59	0.77						
Bayes Net	341	42	62	245	0.89	0.80	0.85						
Simple Logistic	322	61	36	271	0.84	0.88	0.86						
SMO	306	77	23	284	0.80	0.93	0.86						
Decision Table	329	54	44	263	0.86	0.86	0.86						
OneR	306	77	23	284	0.80	0.93	0.86						
ZeroR	383	0	307	0	1.00	0.00	0.56						
J48	337	46	56	251	0.88	0.82	0.85						
Random Forest	333	50	40	267	0.87	0.87	0.87						
IBk	312	71	67	240	0.81	0.78	0.80						
KStar	345	38	106	201	0.90	0.65	0.79						
REPTree	316	67	38	267	0.83	0.88	0.85						

4.2. Classification of data set 2

The second data set is a German credit Data set with 21 attributes and 1000 instances. When the size of the data set is increased, the accuracy of all algorithms are reduced. However the classifier random Forest got highest accuracy. All the classifier expects Oner, ZeroR and Kstar produced more than 70% accuracy.

Simple Logistic took highest time (1.61sec) for making models. Expect simple logistic and SMO all other algorithms used less than 1 sec to make the models. 76.8 % of the instances are correctly classified by Random forest. Simple Logistic and Bays net classified instances correctly by more than 75%.

German credit Data set												
Algorithms)	Correctl y Classifie d Instance s (%)	Incorrectl y Classified Instances (%)	Kappa Statisti c	Time taken (In sec)	Mean Absolute Error	Root Mean Square d Error	Relative Absolute Error (%)	Root relative Squared Error (%)				
Naïve Bayes	75.4	24.6	0.3813	0.01	0.2937	0.4201	69.9042	91.67				
Bayes Net	75.5	24.5	0.3893	0.04	0.3102	0.4187	73.8182	91.3674				
Simple Logistic	75.9	24.1	0.392	1.61	0.3127	0.4037	74.4267	88.084				
SMO	75.2	24.8	0.3673	1.36	0.248	0.498	59.0227	108.671				
Decision Table	71	29	0.2033	0.33	0.3677	0.4321	87.505	94.2815				
OneR	66.1	33.9	0.0552	0.02	0.339	0.5822	80.6802	127.054				
ZeroR	70	30	0	0	0.4202	0.4583	100	100				
J48	70.7	29.3	0.2503	0.1	0.3459	0.4793	82.3125	104.588				
Random Forest	76.8	23.2	0.379	0.34	0.3362	0.4028	80.0091	87.8987				
IBk	72	28	0.3243	0	0.2805	0.5286	66.7546	115.342				
KStar	69.4	30.6	0.2396	0	0.3148	0.4884	74.909	106.583				
REPTree	71.8	28.2	0.2702	0.04	0.3417	0.4424	81.3157	96.532				

Table 3:- Comparison of different classifiers uses German credit data set with 21 attributes and 1000 instances.

Figure 2- Comparison -Accuracy, Sensitivity & Specificity.

German credit data set													
Algorithms	TP	FN	FP	TN	Sensitivity= TP / (TP+FN)	Specificity = TN / (TN+FP)	Accuracy = (TP+TN)/ (TP+FN+FP+TN)						
Naïve	10.5												
Bayes	605	95	151	149	0.86	0.50	0.75						
Bayes Net	601	99	146	154	0.86	0.51	0.76						
Simple Logistic	611	89	159	141	0.87	0.47	0.75						
SMO	611	89	159	141	0.87	0.47	0.75						
Decision Table	625	75	215	85	0.89	0.28	0.71						
OneR	607	93	246	54	0.87	0.20	0.66						
ZeroR	700	0	300	0	1.00	0.00	0.70						
J48	590	110	183	117	0.84	0.39	0.71						
Random													
Forest	642	58	174	126	0.92	0.42	0.77						
IBk	567	133	147	153	0.81	0.51	0.72						
KStar	569	131	175	125	0.81	0.42	0.69						
REPTree	601	99	183	117	0.86	0.39	0.72						

Table4: Comparison of accuracy, sensitivity & specificity in German credit data set.

4.3. Classification of data set 3

The third data set is uses Japanese credit Data with 16 attributes and 690 instances. In this data set, the number of attributes and instances are also less compared to second data set, therefore the accuracy of all algorithms are high in this case. The highest

accuracy is 87%, produced by Random forest. The accuracy of Bayes Net, Simple Logistic, SMO, OneR, J48 and REPTree are also greater than or equal to 85%. ZeroR has the lowest accuracy rate 56%. 86.7% of the instances are correctly classified by random Forest. All the algorithms took less than 1 sec.

Japanese credit Data set												
Algorith	Correctl	Incorrec	Kappa	Time	Mean	Root	Relative	Root				
ms	У	tly	Statistic	taken		Mean		relative				
	Classifie	Classifie		(In	Absolut	Square	Absolute	Squared				
	d	d		second	e Error	d Error	Error	Error				
	Instance	Instance		s)			(%)	(%)				
	s (%)	s (%)										
Naïve	77.6812	22.3188	0.534	0.02	0.2228	0.2228	45.0957	87.6395				
Bayes												
Bayes Net	86.2319	13.7681	0.7186	0.04	0.163	0.3335	32.9964	67.1144				
Simple	84.9275	15.0725	0.698	0.58	0.2127	0.3248	43.0642	65.3608				
Logistic												
SMO	84.9275	15.0725	0.7003	0.62	0.1507	0.3882	30.5133	78.1202				
Decision	83.4783	16.5217	0.6672	0.14	0.2255	0.335	45.6465	67.4073				
Table												
OneR	85.5072	14.4928	0.7116	0.02	0.1449	0.3807	29.3397	76.6032				
ZeroR	55.5072	44.4928		0.01	0.494	0.497	100	100				
			0									
J48	86.087	13.913	0.718	0.04	0.1924	0.3313	38.9417	66.6637				
Random	86.6667	13.3333	0.7295	0.25	0.2294	0.3216	46.4412	64.706				
Forest												
IBk	81.1594	18.8406	0.6178	0	0.1894	0.4334	38.3442	87.2014				
KStar	78.9855	21.0145	0.5666	0.01	0.2259	0.4117	45.734	82.8457				
REPTree	85.6522	14.3478	0.712	0.04	0.2145	0.3358	43.4255	67.5631				

Table 5: Comparison of different classifiers using Japanese credit data set with 16 attributes and 690 instances.

Table6: Comparison of accuracy, sensitivity & specificity in Japanese credit data set

Japanese Credit data set														
Algorithms	TP	FN	FP	TN	Sensitivity= TP / (TP+FN)	Specificity = TN / (TN+FP)	Accuracy = (TP+TN)/ (TP+FN+FP+TN)							
Naïve Bayes	183	124	30	353	0.60	0.92	0.78							
Bayes Net	245	62	33	350	0.80	0.91	0.86							
Simple Logistic	271	36	68	315	0.88	0.82	0.85							
SMO	283	24	80	303	0.92	0.79	0.85							
Decision Table	258	49	65	318	0.84	0.83	0.83							
OneR	284	23	77	306	0.93	0.80	0.86							
ZeroR	0	307	0	383	0.00	1.00	0.56							
J48	257	50	46	337	0.84	0.88	0.86							
Random Forest	258	49	43	340	0.84	0.89	0.87							
IBk	239	68	62	321	0.78	0.84	0.81							
KStar	206	101	44	339	0.67	0.89	0.79							
REPTree	271	36	63	320	0.88	0.84	0.86							

5. CONCLUSION

This paper focused on trying to find the best algorithm for credit risk modeling. This study observed that Random Forest algorithm obtained highest acuracy in all the data sets. It produced 85% of accuracy in Australian data set, 77% in german data set and 86% in japanese data set. However developing a new algorithm for credit risk analysis is necessary to increase the accuracy.

REFERENCES

- [1] Credit and Financial risk analyis. (2016). Retrieved from http://www.credfinrisk.com: http://www.credfinrisk.com/basics.html.
- [2] Aman Kumar Sharma, Suruchi Sahni. (2011). A Comparative Study of Classification Algorithms. International Journal on Computer Science and Engineering (IJCSE), 1890-1895.
- [3] Hong Yu, Xiaolei Huang, Xiaorong Hu, Hengwen Cai. (2010). A Comparative Study on Data Mining Algorithms for Individual Credit Risk Evaluation. IEEE Xplore.
- [4] Kawsar Ahmed, Tasnuba Jesmin. (2014).Comparative Analysis of Data Mining Classification Algorithms in Type-2 Diabetes

Prediction Data Using WEKA Approach. IJSE, vol-7,155.

- [5] Satish Kumar David, Amr T.M. Saeb, Khalid Al Rubeaan. (2013). Comparative Analysis of Data Mining Tools and Classification Techniques using WEKA in Medical Bioinformatics. IISTE.
- [6] Saxena, R. (2017,February 7). http://dataaspirant.com/2017/02/06/naive-bayesclassifier-machine-learning. Retrieved Mav Tuesday, 2018, from http://dataaspirant.com: http://dataaspirant.com/2017/02/06/naive-bayesclassifier-machine-learning/
- [7] Shrey Bavisi, Jash Mehta, Lynette Lopes. (2014). A Comparative Study of Different Data Mining Algorithms. International Journal of Current Engineering and Technology, 3248-3252.
- [8] Vijayarani, S., & Muthulakshmi, M. (2013). Comparative analysis of Bayes and lazy classification algorithms. International Journal of Advanced Research in Computer and Communication Engineering, 2(8), 3118-3124.